Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 24(5): 745-757, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35373433

ABSTRACT

Quercus spp. are one of the most important tree genera in temperate deciduous forests in terms of biodiversity, economic and cultural perspectives. However, natural regeneration of oaks, depending on specific environmental conditions, is still not sufficiently understood. Oak regeneration dynamics are impacted by climate change, but these climate impacts will depend on local forest management and light and temperature conditions. Here, we studied germination, survival and seedling performance (i.e. aboveground biomass, height, root collar diameter and specific leaf area) of four oak species (Q. cerris, Q. ilex, Q. robur and Q. petraea). Acorns were sown across a wide latitudinal gradient, from Italy to Sweden, and across several microclimatic gradients located within and beyond the species' natural ranges. Microclimatic gradients were applied in terms of forest structure, distance to the forest edge and experimental warming. We found strong interactions between species and latitude, as well as between microclimate and latitude or species. The species thus reacted differently to local and regional changes in light and temperature ; in southern regions the temperate Q. robur and Q. petraea performed best in plots with a complex structure, whereas the Mediterranean Q. ilex and Q. cerris performed better in simply structured forests with a reduced microclimatic buffering capacity. The experimental warming treatment only enhanced height and aboveground biomass of Mediterranean species. Our results show that local microclimatic gradients play a key role in the initial stages of oak regeneration; however, one needs to consider the species-specific responses to forest structure and the macroclimatic context.


Subject(s)
Quercus , Climate Change , Forests , Microclimate , Quercus/physiology , Trees
2.
Plant Biol (Stuttg) ; 21(4): 677-687, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30659728

ABSTRACT

Climate change is driving movements of many plants beyond, as well as within, their current distributional ranges. Even migrant plants moving within their current range may experience different plant-soil feedbacks (PSF) because of divergent nonlocal biotic soil conditions. Yet, our understanding to what extent soil biotic conditions can affect the performance of within-range migrant plants is still very limited. We assessed the emergence and growth of migrant forest herbs (Milium effusum and Stachys sylvatica) using soils and seeds collected along a 1,700 km latitudinal gradient across Europe. Soil biota were manipulated through four soil treatments, i.e. unsterilized control soil (PSFUS ), sterilized soil (PSFS ), sterilized soil inoculated with unsterilized home soil (PSFS+HI ) and sterilized soil inoculated with unsterilized foreign soil (PSFS+FI , expected to occur when both plants and soil biota track climate change). Compared to PSFS , PSFUS had negative effects on the growth but not emergence of both species, while PSFS+FI only affected S. sylvatica across all seed provenances. When considering seed origin, seedling emergence and growth responses to nonlocal soils depended on soil biotic conditions. Specifically, the home-away distance effect on seedling emergence differed between the four treatments, and significant responses to chemistry either disappeared (M. effusum) or changed (S. sylvatica) from PSFUS to PSFS . Soil biota emerge as an important driver of the estimated plant migration success. Our results of the effects of soil microorganisms on plant establishment provide relevant information for predictions of the distribution and dynamics of plant species in a changing climate.


Subject(s)
Forests , Poaceae/growth & development , Soil , Stachys/growth & development , Ecosystem , Feedback, Physiological , Soil Microbiology
3.
Plant Biol (Stuttg) ; 19(2): 201-210, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27741365

ABSTRACT

Persistent seed banks are a key plant regeneration strategy, buffering environmental variation to allow population and species persistence. Understanding seed bank functioning within herb layer dynamics is therefore important. However, rather than assessing emergence from the seed bank in herb layer gaps, most studies evaluate the seed bank functioning via a greenhouse census. We hypothesise that greenhouse data may not reflect seed bank-driven emergence in disturbance gaps due to methodological differences. Failure in detecting (specialist) species may then introduce methodological bias into the ecological interpretation of seed bank functions using greenhouse data. The persistent seed bank was surveyed in 40 semi-natural grassland plots across a fragmented landscape, quantifying seedling emergence in both the greenhouse and in disturbance gaps. Given the suspected interpretational bias, we tested whether each census uncovers similar seed bank responses to fragmentation. Seed bank characteristics were similar between censuses. Census type affected seed bank composition, with >25% of species retrieved better by either census type, dependent on functional traits including seed longevity, production and size. Habitat specialists emerged more in disturbance gaps than in the greenhouse, while the opposite was true for ruderal species. Both censuses uncovered fragmentation-induced seed bank patterns. Low surface area sampling, larger depth of sampling and germination conditions cause underrepresentation of the habitat-specialised part of the persistent seed bank flora during greenhouse censuses. Methodological bias introduced in the recorded seed bank data may consequently have significant implications for the ecological interpretation of seed bank community functions based on greenhouse data.


Subject(s)
Asteraceae/physiology , Conservation of Natural Resources , Seed Bank , Seeds/physiology , Asteraceae/growth & development , Ecosystem , Germination , Grassland , Phenotype , Seedlings/growth & development , Seedlings/physiology , Seeds/growth & development
4.
Plant Biol (Stuttg) ; 17(1): 52-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24750437

ABSTRACT

Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A. platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A. platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A. platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A. pseudoplatanus in the face of climate change.


Subject(s)
Acer/physiology , Climate Change , Droughts , Germination , Regeneration , Seedlings/physiology , Seeds/physiology , Soil/chemistry , Temperature , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...